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LIMIT CYCLES AND CHAOS IN EQUATIONS OF THE PENDULUM TYPE * 

A.D. MOROZOV 

It is proved that for sufficiently small e the equation 

z'" -5 sm z = 8z' cos n z ,  n E N (0.t) 

where e is a parameter, has exactly n--I coarse limit cycles (l.c.'s) 
in the region of oscillatory motions and no l.c.'s in the region of rotary 
motions (i.e., l.c.'s going round the phase cylinder). This result is 
used to study an equation of type (0.i) with time-periodic term on the 
right. The role of l.c.'s in the formation of quasi-attractors (q.a.'s) 
is demonstrated. A computer-generated description is given of the 
process by which q.a.'s with developed chaos are formed (for n= 3). 

I. Statement of the pPoblem. Mai~ ~esuZts. we consider equations of the form 

x'" + A (x) = e / ( x ,  x ' ,  vt ;  e) ( t .1 )  

where ,4 is a 2,-periodic function of X and f a periodic function of z and ~ = vt with the 
same period; 8, ~ are parameters. Equations of this kind govern the motions of various pendu- 
lums. Among other applications we mention the problem of the structure of resonance zones in 
non-conservative time-periodic systems 

du __ BH(u,v) dv __ OH(u,v) 
d~ 0------V--- ~- ~ R  (u, ~', ~), d~ du + ttG (u,  v, T) ( t .2 )  

where ~ is a small parameter. As shown in /i, 2/, this problem involves investigating an 
equation of the form (i.i) with a small parameter e depending on ~. In addition, / = o (x) x" + 
O (e), where o (x) is defined by the divergence of the vector field of system (1.2). 

We set A (x) = sin x and consider, first of all, the case in which 8 is a small parameter 
Eq.(l.l) has been studied in this case /3/ for a special form of the function f. A more 
general setting was considered in /2/. It has been observed that an important role in the 
study of Eq.(l.l) is played by the l.c.'s of the autonomous equation 

x " +  s l n x  = e l . ( x , ~ ) ,  Io = < l ( x , x ' , ~ ; 0 ) > ~  ( t .3 )  

~Prikl. Matem. Mekhan. , 53,5,721-730,1989 
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Equations of type (1.3) crop up in a variety of applied problems. Among these are, for 
example, the problem of oscillations of rectangular bodies suspended from cables under the 
action of air flow /4/, selfoscillations of a synchronous motor /5/, and phase synchronization 
problems /6/. 

The investigation of Eq.(l.3) reduces to the problem of l.c.'s. However, it is no easier 
to solve the problem of l.c.'s for Eq.(l.3) than to analyse the original Eq.(l.l). As yet the 
l.c. problem has not been solved (and neither has the problem of steady-state solutions and 
their stability) for Eq.(0.1), which may be considered, together with the Van der Pol equation, 
as one of the most fundamental equations of non-linear oscillation theory. In this paper we 
remedy this omission. We shall present a full qualitative investigation of Eq.(0.1), proving 
the following 

Proposition. There exists a number e, (n)~0 so small that for any le I~ (0, e,) Eq. 
(0.i) with n> I has exactly n-- I coarse l.c.'s (of the first kind) in the region of 
oscillatory motions. In the region of rotary motions there are no l.c.'s (of the second kind). 

Remark 1. The question of the stability of l.c.'s is fairly easy to settle. Indeed, 
stable and unstable l.c.'s alternate. Since the equilibrium state x ~ x ~ 0 is an unstable 
focus for 0<e<2, the nearest l.c. surrounding the equilibrium state is stable, the next is 
unstable, and so on. 

Remark 2. An equation of type (0.i) was considered in the oscillatory region in /4/. 
There the unperturbed solution was taken to be a harmonic mode, which is legitimate only for 
small x. The theoretical result of /4/ is thus valid not for Eq.(0.1) but for a quasilinear 
equation (with sm x on the left replaced by z). 

Remark 3. A bound has been established 
case where /0 is a trigonometric polynomial 
connection see also /i, 8, 9/). 

After proving the proposition we shall 

/7/ for the number of l.c.'s of Eq.(l.3) in the 
in z and an algebraic polynomial in x' (in this 

construct the equation 

x*" + s m  x = ex" (cos nx + a) ( t .4 )  

which has exactly n l.c.'s at a = (--l)"l(4n ~ -- I). Of these, n -- I lie in the region of 
oscillatory motions and one on the boundary between the oscillatory and rotary regions (saddle- 
type l.c.). If n is odd, the saddle-type l.c. is stable if e~0. Using this fact one can 
investigate the "chaotic dynamics" of the equation 

x'" + s in  z = ex" (cos nx -~- a) (1 + c s in ~t) (1.5) 

where e, a,c,v are parameters. The purpose of this study is to demonstrate the role of l.c.'s 
in the formation of non-trivial attracting sets. Hyperbolic (non-trivial) attracting sets are 
usually known as strange attractors. For this class of equations, attracting sets may possibly 
contain stable points with a large period. In this connection we shall use the term "quasi- 
attractor", which is not unknown in the literature, and sometimes also the more common term 
"chaos". 

The solution of the problem involved the use of computers. Some of the results are shown 
in Figs.l-6. Figs.l and 2 illustrate the tra3ectories of Eq.(l.4), and Figs.3-5 the Poincare 
map for Eq.(l.5) in the region Ix I ~, Ix" I~3~ which is part of the development of the 
phase cylinder {x m0d 2~, x'}. An interesting property of Eq.(0.1) revealed by the numerical 
computations is that the above proposition is true at least up to I~ I = 1.8. 
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-3 

Fig.l Fig.2 

The numerical integration of Eq.(l.5) was accomplished using formulae of the Runge-Kutta 
family, with permitted error per step O(He), where H is the step-size, and requiring only six 
calls per step on the routine for computing the right-hand side (in the normally used Runge- 
Kutta formulae the error per step is O(H 5) and the number of calls is ii). The computations 



were done with both single precision (4 bytes per real number) and double precision. 
increase n it was necessary to increase the precision of the computations. 
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2. Imves%igu%~m of Eq.(O.]). We will first briefly consider the integrable case, when 
= 0. 

The unperturbed equation corresponding to (0.1) has an energy integral 

x ' ~ / 2 - - c o s  x = h ( 2 . 1 )  

The region of oscillatory motions of the pendulum corresponds to h ~ - - - - - ( - - t , t ) ,  with h = - - 1  
defining a centre-type equilibrium state, and h= I a saddle. The region of rotary motions 
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of the pendulum corresponds to h S>l Using (2.1), we find 

h ~  ( - - t ,  1), .~(0, h) =- 2 a r c s m ( k s m ( 0 / o ) ) )  
x - -  y (0, h) 2h cn (0/¢o) 

k" (1 + h)/2,  ~) = a / (2K)  
h ~ l ,  x ( 0 ,  h) = 2 a m ( 0 / k ( o )  
x = y (0, h) / : 2 k  -1 dn  (0/ko)) 

k 2 = 2 / ( 1 A - h ) ,  ¢o = n / ( k K ) ;  0 = o)t 

(2 2) 

(2.3) 

Use is made here of the Jacobi elliptic functions, where K denotes the complete elliptic 
integral of the first kind with modulus ~j and ~ is the frequency of the motion. 

It is well-known (see, e.g., /i0, ii/) that the fundamental question in the investigation 
of Eq.(0.1) the determination of its l.c.'s - reduces to determining the zeros of the Poincare- 
Pontryagin generating function 

2~  2 ~  

e~ (hi = I / o  (x, x') zo' dO = I cos (nz) x'xo' dO (2.4) 
0 0 

(x, x', x0' are defined in (2.2), (2.3)). The elliptic integral in (2.4) can be reduced to 
standard form /i, 12/ 

F ~  ) (P) = C~ ) [P~)(P)  K (P) -{- Q~)(P) E (P)] (2.5) 

C~(*) = t 6 / ( 2 n  + t ) l l ,  C~(~) = 8 9 . . . .  / , / (2n + t)1!, p = k 2 ~ (0, 1) 

where P,(~), Q~(~) are polynomials of degree n, n~l, E is the complete elliptic integral 
of the second kind, and the index s = I indicates the region of oscillatory motions and 
s = 2 that of rotary motions. 

Thus, investigation of Eq.(0.1) leads to the study of two classes of special functions: 
{F~(~) (p)}, s = I, 2. For convenience we shall consider Fn(X)/16 instead of F,J 1) and Fn(2)p'/,/8 

insteady of Fn(2), while nevertheless retaining the previous notation F= ~s,. 

PPopert~e8 of the functions Fn(1)(p) (oscillatory region). 1 ° . The functions F,(1)(p) 

are solutions of Gauss's linear hypergeometric equation /i, 13/ 

p (t  - -  p) (Fn(1))" + laFn(1)/4 = 0, E~ - -  4n  2 - -  1, n = 0, t . . . .  (2.6) 

Hence follows the representation 

F~(1) (p) = CpF (U2 - -  n, 1/2 + n, 2; p) (2.7) 

where F is a hypergeometric function, C = c0nst. 
2 ° . It follows from (2.5), (2.7) that 

[(a 1) (0) = 0,  F$1) (~) = ( - -  ] in+l/~,q,  (/~ ~1)(0))' =- 4g ,  h m  (F~,a)) ' = ( - -  1) '~ c~ 
p~l 

3 ° . From property 2 ° and (2.7) we deduce C--4~. The function 
be continued analytically into the complex plane C* slit the real axis from 
z = o¢. Then 

F,~(1) (z) = 4 ~ z F  (1/2 - n, 1/2 + n, 2 ; z ) ,  z ~ C *  

4". We have the following recurrence formula /7/: 

(3 -4- 2n)  F~(~+)~ (z) A- 4n (2z - -  1) F~t*) (z) + (2n - -  3) F(n~l (z) = 0 

It follows at once from (2.4) that 

Fo(1) (z) = (2: - -  t )  K (z) -c  E (z),  F1 (1) (z) = I ( t  - -  z) K + (2z  - -  1) E ] / 3  

5 ° • The functions F,t,)(z), n>l, have exactly n--I zeros in the interval 
real axis. The zeros of F~(') (z) and FI~+), (z) separate one another. The function 
has no zeros in (0, I) (Fo(*) (z) > 0). 

The proof of this property follows from properties 2 °, 4 ° (see also /7/). 
6 ° . The zeros of the functions F~(') (z) in the interval (0, I) are simple. 

Proof. Formula (2.9) implies the representation 

F (1/2 - - n ,  1/, /_  n ,  2; P) c a n  
Z = I to 

(2.8) 

(2.9) 

(2.10) 

(0, 1) of the 

Fo(') (z) 

F ~  ~ (z) = q,_~ (z) F(ol) (z) Jr P,~-I (z) F~ 1) (z), n >/ 2 (2 11) 
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41 -~ 4 1 - -  2 I 
P Z + x = ~ ( I - - 2 z )  P~+ 2 ~ P ~ - I ,  I=1,2 . . . . .  n - - 2  

Po = 1, p ~ =  4(1  - -2z ) /5  
41 q- 4 I - -  2/ 

q, = ~ (t - -  2z) q~-x + ~ %-~' ~ = 2 . . . . .  n - -  2 

qo = 1/5, q ~ =  8 ( t - -  2z)/5 

(2.i2) 

(2.13) 

Using formulae (2.10), (2.11), we find (putting z= p~ (0, I)) 

A F(ol) ~- BF(11) 
(F~)  (p))' = ~ (I - p) 

A n = 4p  ( t  - -  p)  q'u-2 -~- Pn-1 "3'- (1 - -  24) ) qn-2 

B n = 4p (1 - -  p) Pn-x + 3 (1 - -  2p) Pn-* + 3qn-~ 

(2. t4) 

Suppose that at some p = p. we have (Fa), (p.))' = O. Then by (2.14) 

e~ ~) (p,) = - (a~ ~p , ) /B (p,)) F(ox) p, 

Substituting (2.15) into (2.11), we get 

F~) (p.) - F(o~) (p,) D,, (p,)/B,~ (p,) 

D n = qn_sBn - -  p n _ l A n  

(2.15) 

(2.16) 

We assert that 

D~ = --3/~, (2 17) 

Indeed, consider Dj, l<]•n. Using the recurrence relations (2.12), (2.13), we 
obtain D 2 : --I/5 = --3/Z 2, D s = --3/35 = --3/Is. Proceeding by induction, we set D I = --3i-*j, I< 1 < n 
and prove that 

D.+~ = - -  3~+~  (2. t8) 

Using (2.6), (2.11), one can set up a system of differential equations for Pn-1, q,-2. 
Differentiation of Dn then gives D n' (p)~_0. Hence, by (2.12), (2.13), we obtain (2.18). 

Finally, it follows from the condition Dn~=0 that B, (p.)~0. We then obtain from (2.16), 
remembering that F(1)0 (P.)> 0 that F(*), (p.) does not vanish and is finite. This proves property 6 ° . 

7 ° . By the theorem on alternating zeros /14/, the zeros of Fn(I) (p) and (Fn (I) (p))' 
separate one another. 

Properties of the funotions F,y) (0) (potary Peg~on). 1 ° . By the definition of F, (~) (p): 

F(~) ^, = 1 ~  x = ( 2 . t 9 )  n (V) - -7 .~cosnxdn2Td% 2 a m c p  
o~ 

(o))' = - ÷ t  oos.x  ,  

Throughout, ~ = 0,  ~ = 2K.  
2 ° . Fn(2)(p) satisfies the equation 

p ( i  - p) (p ( F . ~ ) ) ' ) '  + (p - -  ~ )  

PPoof. It is more convenient to go back 
using (2.19), we obtain 

F,~(2)/4 = 0 ,  pL. = 4 n  2, n = 0 ,  1 . . . .  ( 2 . 2 0 )  

to the original function F n (p) = 8F(~)n (p)/pll~. Then, 

2 ~ 
(F,0'  = - -  p'/---'-T ! cos nz  dcp 

[I 
3 Icosnxd¢#_ 2 [ E - - ( I - - p )  K 

(FO"  = p./---7- o~ 0,/-~- p ( I  - -  p) 

1 [ E (am ¢p, k ) - -  (t - -  p) q~ 
¢~ - 2 ( I  - -  p) p ' / ,  k 

k sa (pen ¢p ] k = p,/, 
dn  q~ 

After some reduction, we find 

1 I--4n2 I 1 (F,0. = ~ [4 .~ cos ,= d~ - -  - - - f -C-  6 -  cos ,,= da '  q~ dq~ 
c6 ct 
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Using the expressions for Fn.(Fn)', 
reduces to (2.20). 

3 ° . The solution of Eq.(2.20) satisfying the condition Fn(2) (0) =0 
terms of the solution of the hypergeometric equation /14/: 

F~ (~) (9) = C.p 'F  (--*/~ + n, a~' 2 + n, t + 2n; P) 

C ~ =  ~ ( - l / ~ + l ( n + l / ~ ) [ ( 2 n - l l H ] ~  
(~n--l)2n(2n)~ , ~ . - - t  = ~ n  

we obtain an equation which in the case of Fn ¢e~ 

may be expressed in 

(2 2t)  

(the constant Cn is determined by the condition F~ (~) (1) = F~(1) ( t )  = (--I)'~+1~-~). 

4 ° . It follows from (2.21) that Fn (z) can be continued analytically into the complex 
plane C*: 

F~ (~)(z) = C~z~F(--U2 + n, 1/2 + n , l  + 2 n ; z ) ,  z ~ _  C* (2 22) 

5 °. It follows from a theorem of Runckel /15/ on the zeros of hypergeometric functions 
that Fn(')(z) has no zeros in C* other than z = 0. Hence Fn(~) (p) has no zeros for 9 ~ (0, i) 

6 ° . Using the recurrent formulae for contiguous hypergeometric functions, we obtain the 
following recurrent formula: 

3) zF,,+l (z) T 4n (2 - -  z) F,~(2) (z) + (2.23) (2n + (2) , 

(2n - -  3) zF~-I (z) = O, z ~ C* 

and moreover, by the first formula 

Fo(~) (z) = E 

Property 5 ° of the functions 
Pontryagin/10, ii/ imply the truth 

(2.19) , 

(z), FI(~) (z) = [2 (z - -  t)  K + (2 - -  z) EI/(3z) 

F~(~) (z), s = 1, 2, p r o p e r t y  60 o f  F= (1) (z) 
of the proposition stated in Sect.l. 

and a theorem of 

Remark. The functions F (). (P), 0 ~ [0, i], are the eigenfunctions of boundary-value problems 

for Eqs.(2.6) with s= i and (2.20) with s = 2 The recurrent formulae (2.9), (2.23) furnish 
an effective way of evaluating these functions by computer. 

3. 1~$t~gal;~ of gq. (1.4). The generating function for Eq. (1.4) is 

q~,,(') (p; a) - -  F~y) (p) + aFo (~) (p), n ~ i ,  9 ~ (0, t )  (3 . t )  

Thanks to the obvious property Fn (a) (t)  = Fn~ ~) (t)  we can define a global generating function 

(~(1) . / . (h,a), h ~ ( - - 1 , 1 ]  
a )  

[ ¢D¢~) (h, a), h ~>~ t 

This fact, together with formulae (2.7), (2.21), 3ustify our consideration of the functions 
Fn (s) (p) as generating functions in the interval [0, I]. 

The parameter a in (3.1) is chosen so that ~ (i)(i; a) = 0 Then a = a ,  (n) = (--l)n~n -I 

Simple zeros of (D~ (I) (p; u,) correspond to transversal points of intersection of the curves 
F~ O) (9) and --a,F0(*) (9). Using (2.16) , (2.17) and the inequality ] B, (p,) [ < 3 , it is 
not hard to prove that I Fn (I) (9,) ] >I --a,Fo°) (P,) ], where 9, is an extremum point of F~ a) (p). 

When this inequality holds, it follows from properties 2 ° , 5 ° , 7 ° and Theorem 1 of /7/ that 
the function ~,(*) (p; a,) has n- I simple zeros in (0, I). In addition, by the choice 
of a, the function has one more simple zero at p = I, which "migrates" into the region p< 1 

(h < I) as [ a [ rises above ] a, [. If I a I falls below [ a, [, then dDn(1) (p, a) has 
n -- I zeros, and {I)n(2) (p, a) has one zero P = P0; moreover, 90 -+ 0 as [ a I -+ 0 (the l.c. 
in the region of rotary motion goes to infinity). 

This theoretical result, valid for small l e ] , is illustrated by our computer results for 
e = 1, a=a, in Fig.l (n = i) and Fig.2 (n = 3). 

4. I,,)es%4,gat~ of Eq. (1.5). Unlike the autonomous Eq. (1.4) , Eq. (1.5) , which is not 
autonomous, may have resonant periodic regimes with various periods; moreover, the separatrices 
of manifolds of periodic saddle-type motion may intersect transversally, and as a result a 
homoclinic structure may exist (a non-trivial hyperbolic set). Under certain conditions there 
may exist a non-trivial attracting set - a quasi-attractor (q.a.). 

An equation of type (1.5) was investigated in /3/ for small ]e[ (see also /2/). Here, 
therefore, we shall dwell only on the case of relative large l e ]. In that case the computer 
is the main tool of the investigation. 
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As we know, the study of non-autonomous time-periodic equations of type (1.5) leads to 
an investigation of the Poincar~ map of the section t = 0 into itself over the period of the 
applied force. At c = 0 the invariant curves of this map coincide with the appropriate 
trajectories of Eq.(l.4) and lie on the cylinder {x mod 2~,y}. 

We will present the results of a numerical experiment carried out for Eq.(1.5) with c~0 
and ~ ~ 5. 

At u = a.(n) Eq.(1.4) has a saddle-type l.c., but for some values of e, c Eq.(1.5) has 
a q.a. Fig.3 illustrates the q.a. obtained for n ~ I, e ~ ~, c ~ l,a = a. = --I/3, and Fig.4 
a q.a. with n = 3, e ~ I, c ~ 5, a = a, =--I/35. Each figure represents some 3,000 points of 
the Poincare map. The attracting region of these q.a.'s is the entire phase cylinder. That 
the trajectories are unstable at a q.a. was determined by computing the Lyapunov characteristic 
exponents ~± and fractional part of the Lyapunov dimension ~ ~ [~+/~-I- For the case n ~ I 

(Fig.3) the result was ?~0.II, and for n ~ 3 (Fig.4) ?~0.67. We next put e = I. 
The idea of obtaining g.a.'s by time-periodic disturbance of a system with stable saddle- 

type l.c.'s is not new (see, e.g., /16, 17/). The novelty of our approach here is that the 
method does not always imply the existence of a q.a. For Eq.(1.5) with n = 3, a = a. and c 
less than c.~0.72 the q.a. disappears, though in this region the autonomous Eq.(l.4) has a 
stable saddle-type 1.c., while Eq.(l.5) has a homoclinic structure (Fig.5). The explanation 
for this situation is that Eq.(l.4) with n ~ 3, a = a. has two stable and one unstable l.c.'s. 
As c falls below c,, the attracting region is that corresponding to the inner stable l.c. (at 
c :0 5 this is a stable resonant mode of period 6 (2~/5), represented by points 1-6 in 
Fig.5). The situation remains the same for c decreasing down to c**~0.025. 

Thus, for c~_ (c**, c.) Eq.(l.5) with n = 3, a = a, has a single attractor, corresponding 
to the inner stable l.c. of Eq.(1.4). The structure of the attractor depends on the value of 
c. Three cases have been observed: 1) resonant (single-frequency); 2) non-resonant (two- 
frequency - the Poincare map has a smooth closed invariant curve and accordingly Eq.(1.5) has 
a two-dimensional torus);.3) q.a. (a geometrically smeared annular cycle; see /16/). 

A q.a. generated by a saddle-type 1.c. will be called a saddle-type q.a. 
The fact that there is no saddle-type q.a. in the interval c~(c**, c.) may be explained 

as follows. At such values of c the unstable 1.c. of Eq.(1.4) is absorbed by the neighbourhood 
of a saddle-type q.a. (i.e., the neighbourhood of a homoclinic contour), and this neighbourhood 
becomes unstable from within. 

As C decreases away from c** (c~0), a saddle-type q.a. reappears. At c~(O,c**) 
the unstable l.c. of Eq.(l.4) is outside the neighbourhood of the saddle-type q.a. 

Note that the numbers c =cl, c = c** are as it were "crisis" bifurcation values of the 
parameter c. 

Fig.6 shows the bifurcation curve in the plane of the parameters (a,c), corresponding to 
contact of a stable and unstable separatrix of a fixed saddle-point (s,0) for n : 3 and 
e = I. The hatched region is the region of existence of a homoclinic structure (the region 
of transversal intersection of separatrices). 

The situation becomes more complicated when n increases. Only knowledge of the l.c.'s 
of Eq.(l.4) will make it possible to understand the bifurcations due to the appearance and 
disappearance of q.a.'s in Eq.(l.5). It is in this respect that the proposition of Sect.l 
plays a crucial role. Thus, for odd n the q.a.'s bifurcate in accordance with the scenario 
described above for the case n = 3. Naturally, as n increases the number of bifurcations of 
q.a.'s increases, concurrently with the increase in the number of l.c.'s of Eq.(I.4). In the 
case of even n there is no saddle-type q.a. at a ~ a,. 

In conclusion, attention should be called to the role of global bifurcations, which lead 
to the appearance of a saddle-type q.a. with developed chaos at moderate amplitudes of the 
"applied force" (Fig.4). The bifurcations underlying the classical scenarios of transition 
to chaos for these equations (for example, the Feigenbaum scenario) are local in nature and 
require quite high amplitudes of the "applied force" in order to obtain developed chaos. 
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A SUPPLEMENT TO LAWDEN'S THEORY* 

S.T. ZAVALISHCHIN 

An extension of the mathematical model of the motion of a particle of 
variable mass in a central gravitational field is proposed, based on a 
discrete flow of the reactive mass and jump-type variation of the 
direction of the reactive force. The problem of programming the optimal 
orbital transitions is studied, in the case when, as distinct from /i, 
2/, the transit time is fixed. As a result, the possible pieces of 
optimal transitions, corresponding to impulsive, zero, and intermediate 
thrust, are described. It is shown that intermediate thrust generates 
motion along spirals which are not the same as Lawden's spiral. 

I. C~lizati~ of the equations of ~ti~ of a ~ticle of variable mass in a oent~l 
gmvitutio~l field, we know that the analogue of Meshcherskii's equation in the case of the 
plane motion of a particle of variable mass in a central gravitational field is 

r ' "  = / ( r ,  %)+m-*P c o s  8 ,  / =  _ ~ r - n  + ~ 2 ~  ( 1 . 1 )  

~" = r-=x, X" = r m - l P  s i n  O, m" = - -  c - 'P  

Here, r, ~ are the particle polar coordinates, X is the sectoral velocity, ~ is the 
gravitational constant, m is the mass of the particle, o is the specific impulse of the thrust 
P, and the angle 0 characterizes the direction of the reactive force (Fig.l). 

In the classical sense the operations of differentiation of Eqs.(l.l) are only meaningful 
for ordinary /3/ (e.g., piecewise continuous) programs P(.), e( ) However, some problems 
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